Есть ли будущее у волновых электростанций? Почему это выгодно? Волновые электростанции в России.

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Есть ли будущее у волновых электростанций? Почему это выгодно? Волновые электростанции в России.». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Образование такого явления как волны является результатом воздействия солнечных лучей. Они нагревают воздух, в результате чего происходит перемещение в пространстве. Перемещаемый воздух приходит в соприкосновение с водной поверхностью, результатом чего является возникновение волн.

Как работают волновые электростанции

Энергетическая емкость волны зависит от силы ветра, длительности его порывов и длины воздушного фронта. На мелководье величина энергоемкости каждой волны уменьшается вследствие трения о дно.

Волновые электростанции при их применении используют кинетическую энергию перемещающихся масс морской и океанской воды. Независимо от вариантов преобразования используется энергия движущихся морских волн или соответственно энергия движущихся волн океана.

Ни для кого не секрет, что природные богатства находятся на грани истощения. Запасы угля, нефти и газа — основных энергетических источников — подходят к концу. По самым оптимистичным прогнозам ученых, запасов хватит для 150-300 лет жизни. Атомная энергетика тоже не оправдала ожиданий. Большая мощность и производительность окупают затраты на строительство, эксплуатацию, но проблемы захоронения отходов и нанесения ущерба окружающей среде скоро заставят отказаться и от них. По этим причинам ученые ищут новые Сейчас уже действуют ветровые и солнечные электростанции. Но при всех своих достоинствах они имеют существенный недостаток — низкий КПД. Удовлетворить потребности всего населения не удастся. Поэтому необходимы новые решения.

Первая в России волновая электростанция

В России первая ВЭС появилась в 2014 году в Приморском крае. Разработкой занимался коллектив ученых из и Тихоокеанского океанологического института ДВО РАН. Установка имеет экспериментальный характер. Ее особенность в том, что она использует энергию не только волн, но и приливов/отливов.

В Москве предполагается строительство научно-исследовательской лаборатории, которая займется разработкой и созданием первой отечественной поплавковой станции. Возможно, после этого волновые электростанции в России тоже будут иметь промышленное или коммерческое назначение.

На сегодняшний день существует большое количество различных источников энергии, которые использует человек. Основными считаются конечно же , уголь и , но ведь они когда-то закончатся. К сожалению для многих, но запасов данных углеводородов осталось не так уж и много. По приблизительным расчетам ученых, газ и нефть на нашей планете закончится через 50 лет, а уголь через 400-500. Конечно подобные прогнозы делаются с учетом того, что не будет открыто новых месторождений, но все же стоит задуматься, а что если так и произойдет?!

Общее устройство волновых станций

Волновой электростанцией (ВЭС) называют сооружение, расположенное на воде, которое преобразовывает механическую энергию волн в электрическую.

При строительстве ВЭС учитывают два фактора.

  • Кинетическая энергия волн. Волны, поступающие в трубу огромного диаметра, вращают турбинные лопасти, которые приводят в движение генератор. Иногда действует иной принцип: волна, проходя через полую камеру, выталкивает сжатый воздух, заставляя турбину вращаться.
  • Энергия поверхностного качения. В этом случае выработка электроэнергии происходит посредством преобразователей, отслеживающих профиль волны, – так называемых, поплавков, расположенных на поверхности воды.

Здесь используют определенные виды поплавков-преобразователей.

  • «Утка Солтера» – большое количество поплавков, смонтированных на общем валу. Для эффективной работы такого поплавка необходимо установить на валу 20–30 поплавков.
  • Плот Коккереля – сооружение из четырех секций, соединенных шарнирно, которые изгибаются под влиянием волн и приводят в действие гидроцилиндрические установки, способствующие работе генераторов.
  • Преобразователи Pelamis – так называемые морские змеи – соединенные шарнирами цилиндрические секции. Под воздействием волн импровизированная змея изгибается, приводя в движение гидравлические поршни.

Впервые такой объект появился в Норвегии около сорока шести пяти лет назад. Он обладал мощностью пятьсот киловатт. Если рассматривать промышленную сферу, то в ней первой электрообъектом принято считать австралийский. Он заработал 15 лет назад, затем провели ее реконструкции, и спустя четыре года станция заработала снова.

Сейчас его мощность достигает четыреста пятьдесят киловатт.

Принято считать, что первый коммерческий объект начал свою работу тринадцать лет назад в Португалии. Речь идет об установке, использующей механическую волновую энергию. Она работает по принципу под названием «колеблющееся тело». Проектная разработка является трудом английской компании.

В Великобритании была построена самая габаритная в мире станция Wave Hub. Ее местоположение – полуостров Корнуэлла. Объект имеет четыре генератора, каждый из которых достигает мощности по сто пятьдесят киловатт. Принцип работы, как у предыдущей модели.

Выгодно ли использовать энергию волн

Энергия волн считается возобновляемой, к тому же огромный потенциал океана может дать около 20% от всей потребной электроэнергии. Развитие этого направления выгодно со всех сторон, поскольку природные ресурсы начинают активно истощаться, а уголь, нефть и газ рано или поздно закончатся.

Советуем изучить — Условия эксплуатации электродвигателей

Атомная энергетика не сможет решить всех будущих проблем. В связи с потенциальной опасностью и отсутствием гарантированной защиты, АЭС развиваются не так активно, как это необходимо.

К положительным качествам ВЭС можно отнести следующие:

  • Безопасная продолжительная эксплуатация без нарушений экологии.
  • Станции заодно гасят волны возле портов и берегов, выполняя функции защиты.
  • Волны являются возобновляемым источником энергии.
  • Низкая себестоимость полученной электроэнергии.

Минусами волновых установок считаются:

  • Небольшая мощность большинства установок.
  • Отсутствие стабильности в работе под влиянием погоды и природных условий.
  • Возможная опасность для рыболовецких и других судов.

Волновые электростанции в мире

Первая волновая электростанция была запущена в 1985 году в Норвегии. Мощность этой конструкции составляла 500 кВт.

Первой в мире промышленной станцией, использующей энергию волн для выработки электроэнергии, является Oceanlinx, расположенная в Австралии.

Свою трудовую деятельность она начала в 2005 году. Через некоторое время она была реконструирована, а в 2009 году снова вернулась в рабочее состояние. Работа этой силовой установки основана на принципе «колебательного водяного столба». Сейчас мощность составляет 450 кВт.

В 2008 году в Португалии заработала первая коммерческая волновая электростанция. Принцип основан на использовании энергии механических волн. Работа основана на принципе «колеблющегося тела». Мощность 2,3 МВт. Есть конструктивная возможность монтировать дополнительные секции, тем самым увеличивая вместимость.

В Великобритании построена волновая электростанция, которая считается крупнейшей в мире. Он расположен недалеко от полуострова Корниш. Он имеет четыре генератора, каждый мощностью 150 кВт. Принцип работы силовой установки — «качающееся тело».

Принцип действия классической волновой электростанции

Осциллирующая водяная колонна с воздушной турбиной Уэллса являет собой классический, наиболее проработанный вид волновой электростанции. Аналогичное оборудование успешно функционирует как в море, так и в прибрежной зоне.

Принцип работы одинаков и для стационарных, и для плавучих моделей. Волной в, наполовину погруженной в воду, камере поднимается уровень воды. Благодаря заполнению внутреннего объема агрегата водой, воздух, находящийся внутри, под давлением выдавливается из сосуда. Образовавшиеся воздушные потоки пропускаются через лопасти реверсивной турбины низкого давления Уэллса. Когда возникает откат воды, воздух возвращается в камеру, минуя все те же турбинные лопатки. Уэллс добился сохранения направления вращения вала турбины вне зависимости от направления движения волны, что обеспечивает непрерывность передачи крутящего момента на вал генератора.

Небольшое предисловие

Основная идея поиска альтернативных источников энергии заключается в использовании тех ресурсов планеты, которые дает природа. Их эксплуатация, в свою очередь, не оказывает негативного влияния на окружающую среду. Поэтому на данный момент уже существуют волновые электростанции, солнечные, ветряные, геотермальные и так далее.

Волновая электростанция – объект, расположенный в водной среде и использующий энергию волн. Отсюда следует, что строятся такие ВИЭ далеко не на любой территории. На данный момент в мире их не так много: в Португалии, в Шотландии, во Франции, в Южной Корее и так далее.

Существуют такие виды энергии как солнечная, геотермальная, ветровая, но доля этих видов энергии в общем энергетическом балансе весьма скромна из-за своей дороговизны. Нужен новый, экологически чистый источник энергии. Одним из таких источников энергии мог бы стать водород. При горении водород выделяет достаточное количество энергии и является прекрасным топливом. Автомобильный транспорт, да и все двигатели внутреннего сгорания могли бы работать на водороде, на выхлопе выбрасывая в атмосферу только пары воды. Для обогрева жилья в котельных тоже можно было бы использовать водород.

Водород — идеальное экологически чистое топливо. Электролиз воды является процессом получения из нее водорода и кислорода, причем в таком количестве, сколько потребуется в дальнейшем, для сжигания полученного количества этих газов. Но на сегодняшний день производство водорода путем разложения воды дорого и требует немало электроэнергии, которая в свою очередь опять-таки, в большинстве случаев, получается путем сжигания углеводородов. Для решения данной задачи необходимо много дешевой экологически чистой электроэнергии. На решение выше описанной проблемы и направлен предлагаемый проект строительства морских гидроэлектростанций, которые не сжигают углеводороды, а преобразуют энергию морских волн в электрическую энергию.

Энергия морских волн, можно сказать, безгранична, и на сегодняшний день задача видится в том, чтобы наиболее эффективно отобрать и преобразовать эту энергию. Сделать ее приемлемой к использованию и поставить ее на службу человечеству. Как раз об этом и будет идти речь в данной пояснительной записке, где будет рассмотрен способ отбора мощности у морских волн, произведены расчеты мощности на единицу оборудования, просчитана общая мощность выбранной установки, проведен сравнительный анализ окупаемости строительства подобных по мощности электростанций.

Первая в мире коммерческая ВЭС

Первая волновая электростанция коммерческого назначения заработала в 2008 году в Агусадоре, Португалия. Более того, она первая в мире установка, которая использует непосредственно механическую энергию волны. Проект подготовила английская компания Pelamis Wave Power.

В состав конструкции входит несколько секций, которые отпускаются и поднимаются вместе с профилем волны. Секции шарнирно скреплены с гидравлической системой и во время движения приводят ее в действие. Гидравлический механизм заставляет вращаться ротор генератора, благодаря чему и вырабатывается электроэнергия. Используемые в Португалии волновые электростанции плюсы и минусы имеют. Преимущество установки заключается в большой мощности – около 2,25 МВт, а также в возможности установки дополнительных секций. Недостаток установки системы один – возникает сложности с передачей электрической энергии по проводам к потребителю.

Поплавковые волновые электростанции мало распространены, в основном они представлены экспериментальными установками. На таких генераторах работает порядка 400 маяков и буев в мире. Однако крупных станций мало и большинство из них еще строятся.

Действующие поплавковые волновые электростанции есть в Европе. Это Wave Hub с 4 генераторами мощностью 150 кВт каждый, Mutriku Breakwater в Испании мощностью 450 кВт. Еще действует ВЭС в Австралии. Ее мощность 1 МВт, но потребители получают только 450 кВт электроэнергии.

Еще один объект – Oyster Шотландия, ВЭС в акватории Северного моря. Мощность станции – 600 кВт. Принцип работы заключается в том, что донный насос под воздействием волнового поплавка качает на берег воду, а она уже приводит лопасти в движение. Вырабатываемой энергии хватает для нескольких сотен домохозяйств.

Ocean Power Technologies (OPT) – инжиниринговая компания из Шотландии – представила PowerBuoy PB150. Это огромный буй длиной 42 м, удерживаемый одиннадцатиметровым поплавком и якорной системой. Мощность одной станции 150 кВт.

Агрегат способен преобразовывать в электроэнергию вертикальные колебания. Погруженная часть буя-генератора зафиксирована на дне якорной системой. Поплавок перемещается по вертикали в унисон колебанию морских вод – он закреплен на подвижном штоке. Шток – часть линейного генератора, который во время прохождения обмотки статора вырабатывает электричество.

Конструкция оснащена системой датчиков, благодаря которой можно вручную адаптировать ход штока согласно силе, высоте и частоте волн, добиваясь наиболее рационального режима работы оборудования. Во избежание аварий в периоды сильных штормов шток поплавка блокируется автоматически.

К месту дислокации агрегат доставляют буксиры. Несколько подобных буев, установленные рядом, использующие общую якорную систему и единый силовой контур, образуют волновую ферму. Для установки системы мощностью 10МВт необходимо 0,125 квадратных км водной поверхности. Первый такой буй разместили в 33 морских милях от Инвергордона (Шотландия). Анализ среды вблизи функционирующего генератора показал, что он экологически нейтрален.

Проект морской волновой гидроэлектростанции Сильвестрова Б.В.

В связи c волнующими всех нас событиями на японских АЭС стало очевидно, что мирный атом тоже может принести немало проблем. Все предусмотреть просто невозможно. Результат известен. И вместе с тем отказаться от наращивания энергетических мощностей невозможно. Именно поэтому хотел бы ознакомить Вас с одним из способов получения экологически чистой энергии. Используя этот метод, не требуется осваивать какие либо новые технологии. Все, что собрано в этом методе, уже используется в различных отраслях промышленности, впрочем, как и технологии ремонта монтажа и сервисного обслуживания. Мощности же, которые при этом можно получить, столь огромны, что вполне могут превзойти традиционные источники энергии. А вот себестоимость выработанной электроэнергии вполне может оказаться ниже традиционной.

Характеристики Морской Волновой Гидроэлектростанции (МВГэ) :

  • Мощность гидроэлектростанции при волне в 1м — 3600 Мвт
  • Производительность одной насосной секции — 9,085 м³/сек
  • Общая производительность всех насосных секций — 654,12 м³/сек
  • Максимальный напор — 326,4 м.
  • Рабочее давление воды на лопасти гидротурбины — 28,64 атм.
  • Общее количество гидроагрегатов — 12 по 300 мвт каждый
  • Окупаемость станции — 3-4 года.
  • Предельная высота волн, обеспечивающая работу секции — 12м.

С Уважением инженер-механик из Баку Сильвестров Борис Владимирович.

Выбор места для расположения морской гидроэлектростанции

Мощные электрические морские станции могут быть построены на морских платформах, аналогично уже действующим нефтедобывающим платформам. Строятся они на берегу, а затем монтируются в открытом море. Подобные технологии в нефтедобыче уже хорошо отработаны и не представляют никакой трудности.

Выбирая место строительства морской гидроэлектростанции, неплохо было бы иметь статистические данные по среднегодовой амплитуде морских волн. Известно, что морские волны, значительно теряют свою энергию вблизи береговой линии. И потому, целесообразно устанавливать такие платформы на глубине 60-80 м, или на более мелких глубинах, но близко расположенных к резко понижающемуся рельефу дна. Желательно устанавливать их ближе к береговой линии, для облегчения транспортировки выработанной электроэнергии, хотя использовать эту энергию в отдельных случаях можно и непосредственно в море, максимально удаляя вредные производства от мест компактного проживания людей. Можно строить энергоемкие производства непосредственно в море, так же на морских основаниях.

Методика расчета параметров МВГэ по заданной мощности

1. Задается требуемая мощность морской волновой электростанции .

2. Под заданную мощность подбирается серийно выпускаемые гидротурбина и гидрогенератор, или несколько единиц энергооборудования в сумме дающих заданную мощность.

3. По справочным данным определяется требуемое количество воды (в м³/сек и напор, измеряемый в метрах водяного столба) на единицу оборудования.

5. Выбираются диаметр неподвижного водовода и самого поршня.

6. Выбирается конструкция насосной секции, которая может состоять из одного поршня или спаренного блока поршней.

7. В зависимости от глубины установки морской платформы и соответственно этому максимально возможной высоте волны в данном месте, принимается максимальный ход поршня.

8. В зависимости от максимального хода поршня принимаются габаритные размеры самой понтонной части насосной секции.

9. По габаритным размерам подвижной камеры насосной секции (за исключением объемов поршневых камер «А» и «В» вычисляется плавучесть (водоизмещение) насосной секции.

10. Вычисляется вес понтонной камеры исходя из геометрических размеров самой камеры и толщин материала, из которого она изготовлена.

11. Посредством частичного затопления понтонной камеры выбирается паритет сил (веса понтона в сумме с водой внутри него и плавучестью).

12. Вычисляются объемы воды рабочих камер «А» и «В» при заданном перемещении понтонной камеры относительно неподвижного поршня.

13. Исходя из периодичности волн, в районе установки морской платформы, вычисляется производительность одной насосной секции за одну секунду.

14. Подбирается необходимое, минимальное количество насосных секций, обеспечивающих работу гидроустановки при заданной высоте волны.

15. С учетом симметричного, равномерного расположения насосных секций по всей площади морской платформы (в данном случае количество насосных секций может оказаться больше расчетного числа) выбираются геометрические размеры самой платформы. В случае большего количества насосных секций, заданная мощность будет достигнута при более низких волнах, чем расчетная их высота.

16. Исходя из того, что данная конструкция насосных секций одновременно может рассматриваться и как поршневой насос и как гидропресс, и, зная диаметр поршня и диаметр трубопровода подвода воды к лопаткам гидротурбины, можно рассчитать давление воды в момент попадания ее на эти лопатки.

17. Методом подбора сечения водовода в месте попадания воды на лопатки гидротурбины доводим напор до требуемых параметров.

18. Вся лишняя вода при отсутствии резервного гидрооборудования сбрасывается обратно в водоем. При наличии такого оборудования оно может быть задействовано, так же и при волне выше расчетной. Но во всех случаях отработавшая и лишняя вода сбрасывается в водоем.


Похожие записи:

Напишите свой комментарий ...